Abstrakti

Simulation-based inference (SBI) methods such as approximate Bayesian computation (ABC), synthetic likelihood, and neural posterior estimation (NPE) rely on simulating statistics to infer parameters of intractable likelihood models. However, such methods are known to yield untrustworthy and misleading inference outcomes under model misspecification, thus hindering their widespread applicability. In this work, we propose the first general approach to handle model misspecification that works across different classes of SBI methods. Leveraging the fact that the choice of statistics determines the degree of misspecification in SBI, we introduce a regularized loss function that penalises those statistics that increase the mismatch between the data and the model. Taking NPE and ABC as use cases, we demonstrate the superior performance of our method on high-dimensional time-series models that are artificially misspecified. We also apply our method to real data from the field of radio propagation where the model is known to be misspecified. We show empirically that the method yields robust inference in misspecified scenarios, whilst still being accurate when the model is well-specified.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
KustantajaCurran Associates Inc.
Sivumäärä22
ISBN (elektroninen)978-1-7138-9992-1
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Ernest N. Morial Convention Center, New Orleans, Yhdysvallat
Kesto: 10 jouluk. 202316 jouluk. 2023
Konferenssinumero: 37
https://nips.cc/

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaMorgan Kaufmann Publishers
Vuosikerta36
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso10/12/202316/12/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Learning Robust Statistics for Simulation-based Inference under Model Misspecification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä