Abstrakti

Contextual Bayesian Optimization (CBO) efficiently optimizes black-box functions with respect to design variables, while simultaneously integrating contextual information regarding the environment, such as experimental conditions. However, the relevance of contextual variables is not necessarily known beforehand. Moreover, contextual variables can sometimes be optimized themselves at an additional cost, a setting overlooked by current CBO algorithms. Cost-sensitive CBO would simply include optimizable contextual variables as part of the design variables based on their cost. Instead, we adaptively select a subset of contextual variables to include in the optimization, based on the trade-off between their relevance and the additional cost incurred by optimizing them compared to leaving them to be determined by the environment. We learn the relevance of contextual variables by sensitivity analysis of the posterior surrogate model while minimizing the cost of optimization by leveraging recent developments on early stopping for BO. We empirically evaluate our proposed Sensitivity-Analysis-Driven Contextual BO (SADCBO) method against alternatives on both synthetic and real-world experiments, together with extensive ablation studies, and demonstrate a consistent improvement across examples.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence
KustantajaJMLR
Sivut2450-2470
Vuosikerta244
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Barcelona, Espanja
Kesto: 15 heinäk. 202419 heinäk. 2024
Konferenssinumero: 40

Julkaisusarja

NimiProceedings of Machine Learning Research
Vuosikerta244
ISSN (elektroninen)2640-3498

Conference

ConferenceConference on Uncertainty in Artificial Intelligence
LyhennettäUAI
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso15/07/202419/07/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Learning relevant contextual variables within Bayesian optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä