Projekteja vuodessa
Abstrakti
Contextual Bayesian Optimization (CBO) efficiently optimizes black-box functions with respect to design variables, while simultaneously integrating contextual information regarding the environment, such as experimental conditions. However, the relevance of contextual variables is not necessarily known beforehand. Moreover, contextual variables can sometimes be optimized themselves at an additional cost, a setting overlooked by current CBO algorithms. Cost-sensitive CBO would simply include optimizable contextual variables as part of the design variables based on their cost. Instead, we adaptively select a subset of contextual variables to include in the optimization, based on the trade-off between their relevance and the additional cost incurred by optimizing them compared to leaving them to be determined by the environment. We learn the relevance of contextual variables by sensitivity analysis of the posterior surrogate model while minimizing the cost of optimization by leveraging recent developments on early stopping for BO. We empirically evaluate our proposed Sensitivity-Analysis-Driven Contextual BO (SADCBO) method against alternatives on both synthetic and real-world experiments, together with extensive ablation studies, and demonstrate a consistent improvement across examples.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence |
Kustantaja | JMLR |
Sivut | 2450-2470 |
Vuosikerta | 244 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Uncertainty in Artificial Intelligence - Barcelona, Espanja Kesto: 15 heinäk. 2024 → 19 heinäk. 2024 Konferenssinumero: 40 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Vuosikerta | 244 |
ISSN (elektroninen) | 2640-3498 |
Conference
Conference | Conference on Uncertainty in Artificial Intelligence |
---|---|
Lyhennettä | UAI |
Maa/Alue | Espanja |
Kaupunki | Barcelona |
Ajanjakso | 15/07/2024 → 19/07/2024 |
Sormenjälki
Sukella tutkimusaiheisiin 'Learning relevant contextual variables within Bayesian optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
ACCELERATE-PER: Physics-informed machine learning to accelerate stability research on perovskite solar cells
Rinke, P. (Vastuullinen tutkija) & Tiihonen, A. (Projektin jäsen)
01/07/2023 → 31/12/2025
Projekti: EU: MC
-
HEALED/Garg: Human-steered next-generation machine learning for reviving drug design
Garg, V. (Vastuullinen tutkija), Laabid, N. (Projektin jäsen) & Verma, Y. (Projektin jäsen)
01/09/2021 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding