Abstrakti
Learning to perform tasks like pulling a door handle or pushing a button, inherently easy for a human, can be surprisingly difficult for a robot. A crucial problem in these kinds of in-contact tasks is the context specificity of pose and force requirements. In this paper, a robot learns in-contact tasks from human kinesthetic demonstrations. To address the need to balance between the position and force constraints, we propose a model based on the hidden semi-Markov model (HSMM) and Cartesian impedance control. The model captures uncertainty over time and space and allows the robot to smoothly satisfy a task's position and force constraints by online modulation of impedance controller stiffness according to the HSMM state belief. In experiments, a KUKA LWR 4+ robotic arm equipped with a force/torque sensor at the wrist successfully learns from human demonstrations how to pull a door handle and push a button.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 |
Kustantaja | IEEE |
Sivut | 688-695 |
Sivumäärä | 8 |
Vuosikerta | 2016-November |
ISBN (elektroninen) | 9781509037629 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 28 marrask. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE/RSJ International Conference on Intelligent Robots and Systems - Daejeon, Etelä-Korea Kesto: 9 lokak. 2016 → 14 lokak. 2016 http://www.iros2016.org http://www.iros2016.org/ |
Julkaisusarja
Nimi | Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems |
---|---|
Kustantaja | Institute of Electrical and Electronics Engineers Inc. |
ISSN (painettu) | 2153-0858 |
ISSN (elektroninen) | 2153-0866 |
Conference
Conference | IEEE/RSJ International Conference on Intelligent Robots and Systems |
---|---|
Lyhennettä | IROS |
Maa/Alue | Etelä-Korea |
Kaupunki | Daejeon |
Ajanjakso | 09/10/2016 → 14/10/2016 |
www-osoite |