Learning Global Pairwise Interactions with Bayesian Neural Networks

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

5 Lataukset (Pure)

Abstrakti

Estimating global pairwise interaction effects, i.e., the difference between the joint effect and the sum of marginal effects of two input features, with uncertainty properly quantified, is centrally important in science applications. We propose a non-parametric probabilistic method for detecting interaction effects of unknown form. First, the relationship between the features and the output is modelled using a Bayesian neural network, capable of representing complex interactions and principled uncertainty. Second, interaction effects and their uncertainty are estimated from the trained model. For the second step, we propose an intuitive global interaction measure: Bayesian Group Expected Hessian (GEH), which aggregates information of local interactions as captured by the Hessian. GEH provides a natural trade-off between type I and type II error and, moreover, comes with theoretical guarantees ensuring that the estimated interaction effects and their uncertainty can be improved by training a more accurate BNN. The method empirically outperforms available non-probabilistic alternatives on simulated and real-world data. Finally, we demonstrate its ability to detect interpretable interactions between higher-level features (at deeper layers of the neural network).
AlkuperäiskieliEnglanti
OtsikkoECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings
KustantajaIOS PRESS
Sivut1087-1094
Sivumäärä8
ISBN (elektroninen)9781643681009
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaEuropean Conference on Artificial Intelligence - Santiago de Compostela, Espanja
Kesto: 8 kesäkuuta 202012 kesäkuuta 2020
Konferenssinumero: 24
http://ecai2020.eu/

Julkaisusarja

Nimi Frontiers in Artificial Intelligence and Applications
KustantajaIOS Press
Vuosikerta325
ISSN (painettu)0922-6389
ISSN (elektroninen)1879-8314

Conference

ConferenceEuropean Conference on Artificial Intelligence
LyhennettäECAI
MaaEspanja
KaupunkiSantiago de Compostela
Ajanjakso08/06/202012/06/2020
www-osoite

Sormenjälki Sukella tutkimusaiheisiin 'Learning Global Pairwise Interactions with Bayesian Neural Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä