Projekteja vuodessa
Abstrakti
Estimating global pairwise interaction effects, i.e., the difference between the joint effect and the sum of marginal effects of two input features, with uncertainty properly quantified, is centrally important in science applications. We propose a non-parametric probabilistic method for detecting interaction effects of unknown form. First, the relationship between the features and the output is modelled using a Bayesian neural network, capable of representing complex interactions and principled uncertainty. Second, interaction effects and their uncertainty are estimated from the trained model. For the second step, we propose an intuitive global interaction measure: Bayesian Group Expected Hessian (GEH), which aggregates information of local interactions as captured by the Hessian. GEH provides a natural trade-off between type I and type II error and, moreover, comes with theoretical guarantees ensuring that the estimated interaction effects and their uncertainty can be improved by training a more accurate BNN. The method empirically outperforms available non-probabilistic alternatives on simulated and real-world data. Finally, we demonstrate its ability to detect interpretable interactions between higher-level features (at deeper layers of the neural network).
Alkuperäiskieli | Englanti |
---|---|
Otsikko | ECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings |
Kustantaja | IOS PRESS |
Sivut | 1087-1094 |
Sivumäärä | 8 |
ISBN (elektroninen) | 9781643681009 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | European Conference on Artificial Intelligence - Santiago de Compostela, Espanja Kesto: 8 kesäkuuta 2020 → 12 kesäkuuta 2020 Konferenssinumero: 24 http://ecai2020.eu/ |
Julkaisusarja
Nimi | Frontiers in Artificial Intelligence and Applications |
---|---|
Kustantaja | IOS Press |
Vuosikerta | 325 |
ISSN (painettu) | 0922-6389 |
ISSN (elektroninen) | 1879-8314 |
Conference
Conference | European Conference on Artificial Intelligence |
---|---|
Lyhennettä | ECAI |
Maa | Espanja |
Kaupunki | Santiago de Compostela |
Ajanjakso | 08/06/2020 → 12/06/2020 |
www-osoite |
Sormenjälki Sukella tutkimusaiheisiin 'Learning Global Pairwise Interactions with Bayesian Neural Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
Projektit
-
FCAI: Suomen tekoälykeskus
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
Interaktiivinen koneoppiminen useista biodatalähteistä
01/01/2016 → 31/08/2021
Projekti: Academy of Finland: Other research funding