Learning discrete decomposable graphical models via constraint optimization

Tomi Janhunen, Martin Gebser, Jussi Rintanen, Henrik Nyman, Johan Pensar, Jukka Corander*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

11 Sitaatiot (Scopus)
194 Lataukset (Pure)

Abstrakti

Statistical model learning problems are traditionally solved using either heuristic greedy optimization or stochastic simulation, such as Markov chain Monte Carlo or simulated annealing. Recently, there has been an increasing interest in the use of combinatorial search methods, including those based on computational logic. Some of these methods are particularly attractive since they can also be successful in proving the global optimality of solutions, in contrast to stochastic algorithms that only guarantee optimality at the limit. Here we improve and generalize a recently introduced constraint-based method for learning undirected graphical models. The new method combines perfect elimination orderings with various strategies for solution pruning and offers a dramatic improvement both in terms of time and memory complexity. We also show that the method is capable of efficiently handling a more general class of models, called stratified/labeled graphical models, which have an astronomically larger model space.

AlkuperäiskieliEnglanti
Sivut115-130
JulkaisuSTATISTICS AND COMPUTING
Vuosikerta27
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Learning discrete decomposable graphical models via constraint optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä