Learning continuous-time PDEs from sparse data with graph neural networks

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsProfessional

Abstrakti

The behavior of many dynamical systems follow complex, yet still unknown partial differential equations (PDEs). While several machine learning methods have been proposed to learn PDEs directly from data, previous methods are limited to discrete-time approximations or make the limiting assumption of the observations arriving at regular grids. We propose a general continuous-time differential model for dynamical systems whose governing equations are parameterized by message passing graph neural networks. The model admits arbitrary space and time discretizations, which removes constraints on the locations of observation points and time intervals between the observations. The model is trained with continuous-time adjoint method enabling efficient neural PDE inference. We demonstrate the model's ability to work with unstructured grids, arbitrary time steps, and noisy observations. We compare our method with existing approaches on several well-known physical systems that involve first and higher-order PDEs with state-of-the-art predictive performance.
AlkuperäiskieliEnglanti
OtsikkoInternational Conference on Learning Representations
KustantajaOpenReview.net
Sivumäärä15
TilaJulkaistu - 2021
OKM-julkaisutyyppiD3 Artikkeli ammatillisessa konferenssijulkaisussa
TapahtumaInternational Conference on Learning Representations - Virtual, Online
Kesto: 25 huhtik. 202129 huhtik. 2021
Konferenssinumero: 10

Conference

ConferenceInternational Conference on Learning Representations
LyhennettäICLR
KaupunkiVirtual, Online
Ajanjakso25/04/202129/04/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Learning continuous-time PDEs from sparse data with graph neural networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä