Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment

Qingfeng Yao, Linghan Meng, Qifeng Zhang, Jing Zhao, Joni Pajarinen, Xiaohui Wang, Zhibin Li, Cong Wang*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

18 Lataukset (Pure)

Abstrakti

This letter proposes a learning-based adaptive propulsion control (APC) method for a quadruped robot integrated with thrusters in amphibious environments, allowing it to move efficiently in water while maintaining its ground locomotion capabilities. We designed the specific reinforcement learning method to train the neural network to perform the vector propulsion control. Our approach coordinates the legs and propeller, enabling the robot to achieve speed and trajectory tracking tasks in the presence of actuator failures and unknown disturbances. Our simulated validations of the robot in water demonstrate the effectiveness of the trained neural network to predict the disturbances and actuator failures based on historical information, showing that the framework is adaptable to changing environments and is suitable for use in dynamically changing situations. Our proposed approach is suited to the hardware augmentation of quadruped robots to create avenues in the field of amphibious robotics and expand the use of quadruped robots in various applications.

AlkuperäiskieliEnglanti
Sivut7889-7896
Sivumäärä8
JulkaisuIEEE Robotics and Automation Letters
Vuosikerta8
Numero12
DOI - pysyväislinkit
TilaJulkaistu - 1 jouluk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä