Projekteja vuodessa
Abstrakti
Time-Sensitive Networking (TSN) and Deterministic Networking (DetNet) standards come to satisfy the needs of many industries for deterministic network services. That is the ability to establish a multi-hop path over an IP network for a given flow with deterministic Quality of Service (QoS) guarantees in terms of latency, jitter, packet loss, and reliability. In this work, we propose a reinforcement learning-based solution, which is dubbed LEARNET, for the flow scheduling in deterministic asynchronous networks. The solution leverages predictive data analytics and reinforcement learning to maximize the network operator's revenue. We evaluate the performance of LEARNET through simulation in a fifth-generation (5G) asynchronous deterministic backhaul network where incoming flows have characteristics similar to the four critical 5GQoS Identifiers (5QIs) defined in Third Generation Partnership Project (3GPP) TS 23.501 V16.1.0. Also, we compared the performance of LEARNET with a baseline solution that respects the 5QIs priorities for allocating the incoming flows. The obtained results show that, for the scenario considered, LEARNET achieves a gain in the revenue of up to 45 compared to the baseline solution.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2020 IEEE International Conference on Communications, ICC 2020 - Proceedings |
Kustantaja | IEEE |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781728150895 |
DOI - pysyväislinkit | |
Tila | Julkaistu - kesäk. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Communications - Virtual Conference, Dublin, Irlanti Kesto: 7 kesäk. 2020 → 11 kesäk. 2020 |
Julkaisusarja
Nimi | IEEE International Conference on Communications |
---|---|
ISSN (painettu) | 1550-3607 |
ISSN (elektroninen) | 1938-1883 |
Conference
Conference | IEEE International Conference on Communications |
---|---|
Lyhennettä | ICC |
Maa/Alue | Irlanti |
Kaupunki | Dublin |
Ajanjakso | 07/06/2020 → 11/06/2020 |
Sormenjälki
Sukella tutkimusaiheisiin 'LEARNET: Reinforcement Learning Based Flow Scheduling for Asynchronous Deterministic Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 3 Päättynyt
-
5G-FORCE-Taleb
Taleb, T. (Vastuullinen tutkija), Addad, R. (Projektin jäsen), Amor, A. (Projektin jäsen), Afolabi, I. (Projektin jäsen), Khennouche, H. (Projektin jäsen), Kerfah, I. (Projektin jäsen) & Batouche, A. (Projektin jäsen)
01/01/2019 → 31/03/2021
Projekti: Business Finland: Other research funding
-
5G-FORCE: 5G-FORCE
Costa Requena, J. (Vastuullinen tutkija)
01/01/2019 → 31/03/2021
Projekti: Business Finland: Other research funding
-
CSN: Customized Software Networking across Multiple Administrative Domains
Taleb, T. (Vastuullinen tutkija), Addad, R. (Projektin jäsen), Afolabi, I. (Projektin jäsen), Amor, A. (Projektin jäsen), Yu, H. (Projektin jäsen), Kianpisheh, S. (Projektin jäsen), Mariouak, M. (Projektin jäsen), Hellaoui, H. (Projektin jäsen), Sehad, N. (Projektin jäsen), Boudi, A. (Projektin jäsen), El Marai, O. (Projektin jäsen), Shokrnezhad, M. (Projektin jäsen), Bagaa, M. (Projektin jäsen), Maity, I. (Projektin jäsen), Naas, S.-A. (Projektin jäsen), Bekkouche, O. (Projektin jäsen), Benzaid, C. (Projektin jäsen), Kerfah, I. (Projektin jäsen), Mada, B. (Projektin jäsen) & Yang, B. (Projektin jäsen)
01/09/2017 → 31/08/2021
Projekti: Academy of Finland: Other research funding