Abstrakti
LCLs or locally checkable labelling problems (e.g. maximal independent set, maximal matching, and vertex colouring) in the LOCAL model of computation are very well-understood in cycles (toroidal 1-dimensional grids): every problem has a complexity of O(1), Θ(log∗ n), or Θ(n), and the design of optimal algorithms can be fully automated. This work develops the complexity theory of LCL problems for toroidal 2-dimensional grids. The complexity classes are the same as in the 1-dimensional case: O(1), Θ(log∗ n), and Θ(n). However, given an LCL problem it is undecidable whether its complexity is Θ(log∗ n) or Θ(n) in 2-dimensional grids. Nevertheless, if we correctly guess that the complexity of a problem is Θ(log∗ n), we can completely automate the design of optimal algorithms. For any problem we can find an algorithm that is of a normal form A′·Sk, where A′ is a finite function, Sk is an algorithm for finding a maximal independent set in kth power of the grid, and k is a constant. Finally, partially with the help of automated design tools, we classify the complexity of several concrete LCL problems related to colourings and orientations.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | PODC 2017 - Proceedings of the ACM Symposium on Principles of Distributed Computing |
Kustantaja | ACM |
Sivut | 101-110 |
Sivumäärä | 10 |
Vuosikerta | Part F129314 |
ISBN (elektroninen) | 9781450349925 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 26 heinäkuuta 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | ACM Symposium on Principles of Distributed Computing - Washington, Yhdysvallat Kesto: 25 heinäkuuta 2017 → 27 heinäkuuta 2017 Konferenssinumero: 36 |
Conference
Conference | ACM Symposium on Principles of Distributed Computing |
---|---|
Lyhennettä | PODC |
Maa/Alue | Yhdysvallat |
Kaupunki | Washington |
Ajanjakso | 25/07/2017 → 27/07/2017 |