Large-scale selective maintenance optimization using bathtub-shaped failure rates

Teemu Ikonen*, Hossein Mostafaei, Yixin Ye, David Bernal, Ignacio Grossmann, Iiro Harjunkoski

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

Engineering systems are typically maintained during planned, or unplanned, downtimes in between operation periods. If the duration of the downtime or the budget of the maintenance is an active constraint, all desired maintenance actions cannot be conducted. Seeking of the optimal subset of maintenance actions is referred to as selective maintenance optimization. In this work, we link the statistical analysis of lifetime data into selective maintenance optimization, focusing on datasets with bathtub-shaped failure rates. We also propose two improvements to the efficiency of mixed integer non-linear programming (MINLP)-based selective maintenance optimization. The first is the preclusion of component replacements that, due to the infant mortality period of the component, reduce the reliability. The second is the convexification of two MINLP models, involving only replacement, or replacement and repair, actions. The improvements enable our MINLP-based methods to tackle large-scale selective maintenance optimization problems with up to 700 to 1000 system components.
AlkuperäiskieliEnglanti
Artikkeli106876
JulkaisuComputers and Chemical Engineering
Vuosikerta139
DOI - pysyväislinkit
TilaHyväksytty/In press - 19 huhtikuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Large-scale selective maintenance optimization using bathtub-shaped failure rates'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    • 1 Päättynyt

    Synerginen ja älykäs tuotannonoptimointi

    Ikonen, T., Harjunkoski, I., Mostafaei, H. & Mohammadi, M.

    01/01/201815/02/2020

    Projekti: Academy of Finland: Other research funding

    Siteeraa tätä