Large deviations of multichordal SLE⁡0C, real rational functions, and zeta-regularized determinants of Laplacians

Eveliina Peltola, Yilin Wang

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

4 Sitaatiot (Scopus)
6 Lataukset (Pure)

Abstrakti

We prove a strong large deviation principle (LDP) for multiple chordal SLE⁡0+SLE0+​ curves with respect to the Hausdorff metric. In the single-chord case, this result strengthens an earlier partial result by the second author. We also introduce a Loewner potential, which in the smooth case has a simple expression in terms of zeta-regularized determinants of Laplacians. This potential differs from the LDP rate function by an additive constant depending only on the boundary data, which satisfies PDEs arising as a semiclassical limit of the Belavin–Polyakov–Zamolodchikov equations of level 2 in conformal field theory with central charge c→−∞c→−∞.

Furthermore, we show that every multichord minimizing the potential in the upper half-plane for given boundary data is the real locus of a rational function and is unique, thus coinciding with the κ→0+κ→0+ limit of the multiple SLE⁡κSLEκ​. As a by-product, we provide an analytic proof of the Shapiro conjecture in real enumerative geometry, first proved by Eremenko and Gabrielov: if all critical points of a rational function are real, then the function is real up to post-composition with a Möbius transformation.
AlkuperäiskieliEnglanti
Sivut469–535
Sivumäärä67
JulkaisuJournal of the European Mathematical Society
Vuosikerta26
Numero2
Varhainen verkossa julkaisun päivämäärä28 huhtik. 2023
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Large deviations of multichordal SLE⁡0C, real rational functions, and zeta-regularized determinants of Laplacians'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä