Abstrakti
Computational interaction and user modeling is presently limited in the domain of emotions. We investigate a potential new approach to computational modeling of emotional response behavior, by using modern neural language models to generate synthetic self-report data, and evaluating the human-likeness of the results. More specifically, we generate responses to the PANAS questionnaire with four different variants of the recent GPT-3 model. Based on both data visualizations and multiple quantitative metrics, the human-likeness of the responses increases with model size, with the largest Davinci model variant generating the most human-like data.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 27th International Conference on Intelligent User Interfaces, IUI 2022 Companion |
Kustantaja | ACM |
Sivut | 69-72 |
Sivumäärä | 4 |
ISBN (elektroninen) | 978-1-4503-9145-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 22 maalisk. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Intelligent User Interfaces - Virtual, Online, Suomi Kesto: 22 maalisk. 2022 → 25 maalisk. 2022 Konferenssinumero: 27 |
Julkaisusarja
Nimi | International Conference on Intelligent User Interfaces |
---|
Conference
Conference | International Conference on Intelligent User Interfaces |
---|---|
Lyhennettä | IUI |
Maa/Alue | Suomi |
Kaupunki | Virtual, Online |
Ajanjakso | 22/03/2022 → 25/03/2022 |