Koopman-based Neural Lyapunov functions for general attractors

Shankar A. Deka, Claire J. Tomlin, Alonso M. Valle

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Koopman spectral theory has grown in the past decade as a powerful tool for dynamical systems analysis and control. In this paper, we show how recent data-driven techniques for estimating Koopman-Invariant subspaces with neural networks can be leveraged to extract Lyapunov certificates for the underlying system. In our work, we specifically focus on systems with a limit-cycle, beyond just an isolated equilibrium point, and use Koopman eigenfunctions to efficiently parameterize candidate Lyapunov functions to construct forward-invariant sets under some (unknown) attractor dynamics. Additionally, when the dynamics are polynomial and when neural networks are replaced by polynomials as a choice of function approximators in our approach, one can further leverage Sum-of-Squares programs and/or nonlinear programs to yield provably correct Lyapunov certificates. In such a polynomial case, our Koopman-based approach for constructing Lyapunov functions uses significantly fewer decision variables compared to directly formulating and solving a Sum-of-Squares optimization problem.
AlkuperäiskieliEnglanti
Otsikko2022 IEEE 61st Conference on Decision and Control (CDC)
KustantajaIEEE
Sivut5123-5128
Sivumäärä6
ISBN (painettu)978-1-6654-6762-9
DOI - pysyväislinkit
TilaJulkaistu - 9 jouluk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Conference on Decision and Control - Cancun, Mexico, Cancun, Meksiko
Kesto: 6 jouluk. 20229 jouluk. 2022
Konferenssinumero: 61

Julkaisusarja

NimiProceedings of the IEEE Conference on Decision & Control
ISSN (elektroninen)2576-2370

Conference

ConferenceIEEE Conference on Decision and Control
LyhennettäCDC
Maa/AlueMeksiko
KaupunkiCancun
Ajanjakso06/12/202209/12/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Koopman-based Neural Lyapunov functions for general attractors'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä