Abstrakti
Koopman spectral theory has grown in the past decade as a powerful tool for dynamical systems analysis and control. In this paper, we show how recent data-driven techniques for estimating Koopman-Invariant subspaces with neural networks can be leveraged to extract Lyapunov certificates for the underlying system. In our work, we specifically focus on systems with a limit-cycle, beyond just an isolated equilibrium point, and use Koopman eigenfunctions to efficiently parameterize candidate Lyapunov functions to construct forward-invariant sets under some (unknown) attractor dynamics. Additionally, when the dynamics are polynomial and when neural networks are replaced by polynomials as a choice of function approximators in our approach, one can further leverage Sum-of-Squares programs and/or nonlinear programs to yield provably correct Lyapunov certificates. In such a polynomial case, our Koopman-based approach for constructing Lyapunov functions uses significantly fewer decision variables compared to directly formulating and solving a Sum-of-Squares optimization problem.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2022 IEEE 61st Conference on Decision and Control (CDC) |
Kustantaja | IEEE |
Sivut | 5123-5128 |
Sivumäärä | 6 |
ISBN (painettu) | 978-1-6654-6762-9 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 9 jouluk. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Conference on Decision and Control - Cancun, Mexico, Cancun, Meksiko Kesto: 6 jouluk. 2022 → 9 jouluk. 2022 Konferenssinumero: 61 |
Julkaisusarja
Nimi | Proceedings of the IEEE Conference on Decision & Control |
---|---|
ISSN (elektroninen) | 2576-2370 |
Conference
Conference | IEEE Conference on Decision and Control |
---|---|
Lyhennettä | CDC |
Maa/Alue | Meksiko |
Kaupunki | Cancun |
Ajanjakso | 06/12/2022 → 09/12/2022 |