KLANN: Linearising Long-Term Dynamics in Nonlinear Audio Effects Using Koopman Networks

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

30 Lataukset (Pure)

Abstrakti

In recent years, neural network-based black-box modeling of nonlinear audio effects has improved considerably. Present convolutional and recurrent models can model audio effects with long-term dynamics, but the models require many parameters, thus increasing the processing time. In this paper, we propose KLANN, a Koopman-Linearised Audio Neural Network structure that lifts a one-dimensional signal (mono audio) into a high-dimensional approximately linear state-space representation with nonlinear mapping, and then uses differentiable biquad filters to predict linearly within the lifted state-space. Results show that the proposed models match the high performance of the state-of-the-art neural models while having a more compact architecture, reducing the number of parameters by tenfold, and having interpretable components.

AlkuperäiskieliEnglanti
Sivut1169-1173
Sivumäärä5
JulkaisuIEEE Signal Processing Letters
Vuosikerta31
DOI - pysyväislinkit
TilaJulkaistu - 16 huhtik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'KLANN: Linearising Long-Term Dynamics in Nonlinear Audio Effects Using Koopman Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä