Kirkman triple systems with subsystems

Janne I. Kokkala, Patric R.J. Östergård

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

A Steiner triple system of order v, STS(v), together with a resolution of its blocks is called a Kirkman triple system of order v, KTS(v). A KTS(v) exists if and only if v≡3(mod6). The smallest order for which the KTS(v) have not been classified is v=21, which is also the smallest order for which the existence of a doubly resolvable STS(v) is open. Here, KTS(21) with STS(7) and STS(9) subsystems are classified, leading to more than 13 million KTS(21). In this process, systems missing from an earlier classification of KTS(21) with nontrivial automorphisms are encountered, so such a classification is redone.

AlkuperäiskieliEnglanti
Artikkeli111960
Sivumäärä8
JulkaisuDiscrete Mathematics
Vuosikerta343
Numero9
DOI - pysyväislinkit
TilaJulkaistu - syyskuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Kirkman triple systems with subsystems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä