Projekteja vuodessa
Abstrakti
This paper describes systems submitted to SemEval 2021 Task 1: Lexical Complexity Prediction (LCP). We compare a linear and a nonlinear regression models trained to work for both tracks of the task. We show that both systems are able to generalize better when supplied with information about complexities of single word and multi-word expression (MWE) targets simultaneously. This approach proved to be the most beneficial for multi-word expression targets. We also demonstrate that some hand-crafted features differ in their importance for the target types.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | SemEval 2021 - 15th International Workshop on Semantic Evaluation, Proceedings of the Workshop |
Toimittajat | Alexis Palmer, Nathan Schneider, Natalie Schluter, Guy Emerson, Aurelie Herbelot, Xiaodan Zhu |
Kustantaja | Association for Computational Linguistics |
Sivut | 700-705 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781954085701 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Workshop on Semantic Evaluation - Virtual, Bangkok, Thaimaa Kesto: 5 elok. 2021 → 6 elok. 2021 |
Julkaisusarja
Nimi | SemEval 2021 - 15th International Workshop on Semantic Evaluation, Proceedings of the Workshop |
---|
Workshop
Workshop | International Workshop on Semantic Evaluation |
---|---|
Lyhennettä | SemEval |
Maa/Alue | Thaimaa |
Kaupunki | Bangkok |
Ajanjakso | 05/08/2021 → 06/08/2021 |
Sormenjälki
Sukella tutkimusaiheisiin 'katildakat at SemEval-2021 Task 1: Lexical Complexity Prediction of Single Words and Multi-Word Expressions in English'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
Aka-DigiTala
Kurimo, M., Al-Ghezi, R., Getman, Y. & Voskoboinik, E.
01/09/2019 → 31/08/2023
Projekti: Academy of Finland: Other research funding