Kalman filtering with empirical noise models

Matti Raitoharju, Henri Nurminen, Demet Cilden-Guler, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

Most Kalman filter extensions assume Gaussian noise and when the noise is non-Gaussian, usually other types of filters are used. These filters, such as particle filter variants, are computationally more demanding than Kalman type filters. In this paper, we present an algorithm for building models and using them with a Kalman type filter when there is empirically measured data of the measurement errors. The paper evaluates the proposed algorithm in three examples. The first example uses simulated Student-t distributed measurement errors and the proposed algorithm is compared with algorithms designed specifically for Student-t distribution. Last two examples use real measured errors, one with real data from an Ultra Wideband (UWB) ranging system, and the other using low-Earth orbiting satellite magnetometer measurements. The results show that the proposed algorithm is more accurate than algorithms that use Gaussian assumptions and has similar accuracy to algorithms that are specifically designed for a certain probability distribution.

AlkuperäiskieliEnglanti
OtsikkoProceedings of International Conference on Localization and GNSS, ICL-GNSS 2021
ToimittajatJari Nurmi, Elena-Simona Lohan, Joaquin Torres-Sospedra, Heidi Kuusniemi, Aleksandr Ometov
KustantajaIEEE
Sivumäärä7
ISBN (elektroninen)978-1-7281-9644-2
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Localization and GNSS - Tampere, Suomi
Kesto: 1 kesäk. 20213 kesäk. 2021

Julkaisusarja

NimiInternational Conference on Localization and GNSS
ISSN (elektroninen)2325-0771

Conference

ConferenceInternational Conference on Localization and GNSS
LyhennettäICL-GNSS
Maa/AlueSuomi
KaupunkiTampere
Ajanjakso01/06/202103/06/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Kalman filtering with empirical noise models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä