Joint Point Process Model for Counterfactual Treatment–Outcome Trajectories Under Policy Interventions

Caglar Hizli*, Ti John, Anne Juuti, Tuure Saarinen, Kirsi Pietiläinen, Pekka Marttinen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaKonferenssiesitysScientificvertaisarvioitu

Abstrakti

Policy makers need to predict the progression of an outcome before adopting
a new treatment policy, which defines when and how a sequence of treatments
affecting the outcome occurs in continuous time. Commonly, algorithms that
predict interventional future outcome trajectories take a fixed sequence of future treatments as input. This excludes scenarios where the policy is unknown or a counterfactual analysis is needed. To handle these limitations, we develop a joint model for treatments and outcomes, which allows for the estimation of treatment policies and effects from sequential treatment–outcome data. It can answer interventional and counterfactual queries about interventions on treatment policies, as we show with a realistic semi-synthetic simulation study. This abstract is based on work that is currently under review for AAAI-23.
AlkuperäiskieliEnglanti
TilaJulkaistu - 2022
OKM-julkaisutyyppiEi sovellu
TapahtumaConference on Neural Information Processing Systems - New Orleans, Yhdysvallat
Kesto: 28 marrask. 20229 jouluk. 2022
Konferenssinumero: 36
https://nips.cc/

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso28/11/202209/12/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Joint Point Process Model for Counterfactual Treatment–Outcome Trajectories Under Policy Interventions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä