John–Nirenberg inequalities for parabolic BMO

Juha Kinnunen, Kim Myyryläinen*, Dachun Yang

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

We discuss a parabolic version of the space of functions of bounded mean oscillation related to a doubly nonlinear parabolic partial differential equation. Parabolic John–Nirenberg inequalities, which give exponential decay estimates for the oscillation of a function, are shown in the natural geometry of the partial differential equation. Chaining arguments are applied to change the time lag in the parabolic John–Nirenberg inequality. We also show that the quasihyperbolic boundary condition is a necessary and sufficient condition for a global parabolic John–Nirenberg inequality. Moreover, we consider John–Nirenberg inequalities with medians instead of integral averages and show that this approach gives the same class of functions as the original definition.

AlkuperäiskieliEnglanti
JulkaisuMATHEMATISCHE ANNALEN
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 24 syysk. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'John–Nirenberg inequalities for parabolic BMO'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä