Projekteja vuodessa
Abstrakti
This paper considers approximate smoothing for discretely observed non-linear stochastic differential equations. The problem is tackled by developing methods for linearising stochastic differential equations with respect to an arbitrary Gaussian process. Two methods are developed based on (1) taking the limit of statistical linear regression of the discretised process and (2) minimising an upper bound to a cost functional. Their difference is manifested in the diffusion of the approximate processes. This in turn gives novel derivations of pre-existing Gaussian smoothers when Method 1 is used and a new class of Gaussian smoothers when Method 2 is used. Furthermore, based on the aforementioned development the iterative Gaussian smoothers in discrete-time are generalised to the continuous-time setting by iteratively re-linearising the stochastic differential equation with respect to the current Gaussian process approximation to the smoothed process. The method is verified in two challenging tracking problems, a reentry problem and a radar tracked coordinated turn model with state dependent diffusion. The results show that the method has competitive estimation accuracy with state-of-the-art smoothers.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 1-12 |
Sivumäärä | 12 |
Julkaisu | Signal Processing |
Vuosikerta | 159 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 kesäk. 2019 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Probabilistinen syväoppiminen hierarkkisilla stokastisilla osittaisdifferentiaaliyhtälöillä
Särkkä, S., Karvonen, T., Sarmavuori, J., Raitoharju, M., Bahrami Rad, A., Hostettler, R., Emzir, M., Gao, R., Purisha, Z. & Tronarp, F.
01/01/2018 → 31/12/2019
Projekti: Academy of Finland: Other research funding