TY - JOUR
T1 - Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017
AU - Acciari, V. A.
AU - Ansoldi, S.
AU - Antonelli, L. A.
AU - Arbet Engels, A.
AU - Artero, M.
AU - Asano, K.
AU - Babić, A.
AU - Baquero, A.
AU - Barres De Almeida, U.
AU - Barrio, J. A.
AU - Batković, I.
AU - Becerra González, J.
AU - Bednarek, W.
AU - Bellizzi, L.
AU - Bernardini, E.
AU - Bernardos, M.
AU - Berti, A.
AU - Besenrieder, J.
AU - Bhattacharyya, W.
AU - Bigongiari, C.
AU - Blanch, O.
AU - Bošnjak, A.
AU - Busetto, G.
AU - Carosi, R.
AU - Ceribella, G.
AU - Cerruti, M.
AU - Chai, Y.
AU - Chilingarian, A.
AU - Cikota, S.
AU - Colak, S. M.
AU - Colombo, E.
AU - Contreras, J. L.
AU - Cortina, J.
AU - Covino, S.
AU - D'Amico, G.
AU - D'Elia, V.
AU - Da Vela, P.
AU - Dazzi, F.
AU - De Angelis, A.
AU - Fallah Ramazani, V.
AU - Karjalainen, M.
AU - Lindfors, E.
AU - Will, M.
AU - Lähteenmäki, A.
AU - Tornikoski, M.
AU - Ramakrishnan, V.
AU - Järvelä, E.
AU - Gupta, A. C.
AU - Chen, W. P.
AU - Lin, H. C.
AU - MAGIC Collaboration
AU - FACT Collaboration
N1 - Publisher Copyright:
© 2021 Georg Thieme Verlag. All rights reserved.
PY - 2021/11/29
Y1 - 2021/11/29
N2 - Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsahovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.Results. The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3 sigma. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from gamma(min)' = 2 x 10(4) to gamma(max)' = 6 x 10(5).
AB - Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsahovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.Results. The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3 sigma. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from gamma(min)' = 2 x 10(4) to gamma(max)' = 6 x 10(5).
KW - BL Lacertae objects: individual: Mrk 421
KW - Galaxies: active
KW - Radiation mechanisms: non-thermal
UR - http://www.scopus.com/inward/record.url?scp=85121042376&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202141004
DO - 10.1051/0004-6361/202141004
M3 - Article
AN - SCOPUS:85121042376
SN - 0004-6361
VL - 655
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - 89
ER -