Inverse finite-size scaling for high-dimensional significance analysis

Yingying Xu, Santeri Puranen, Jukka Corander, Yoshiyuki Kabashima

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
158 Lataukset (Pure)

Abstrakti

We propose an efficient procedure for significance determination in high-dimensional dependence learning based on surrogate data testing, termed inverse finite-size scaling (IFSS). The IFSS method is based on our discovery of a universal scaling property of random matrices which enables inference about signal behavior from much smaller scale surrogate data than the dimensionality of the original data. As a motivating example, we demonstrate the procedure for ultra-high-dimensional Potts models with order of 1010 parameters. IFSS reduces the computational effort of the data-testing procedure by several orders of magnitude, making it very efficient for practical purposes. This approach thus holds considerable potential for generalization to other types of complex models.

AlkuperäiskieliEnglanti
Artikkeli062112
Sivut1-9
JulkaisuPhysical Review E
Vuosikerta97
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 6 kesäkuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Inverse finite-size scaling for high-dimensional significance analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä