Interference-adjusted power learning curve model with forgetting

Jaakko Peltokorpi*, Mohamad Y. Jaber

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

8 Sitaatiot (Scopus)
132 Lataukset (Pure)

Abstrakti

Researchers in production and operations management have studied the effect of worker learning and forgetting on system performance for decades. It remains an active research topic. Those studies have assumed that production interruptions (or production breaks) cause forgetting, which deteriorates performance. Research on human working memory provides enough evidence that continuous forgetting, precisely cognitive interference, results from overloading the memory with information. Despite the evidence, few studies have incorporated it into learning curve models. This paper presents an enhanced version of the power learning curve that accounts for a variable degree of interference when moving from a production cycle to the next. It adopts the concept of memory trace decay to measure the residual (interference-adjusted), not the nominal (maximum) cumulative experience. We test the developed model against learning data from manual assembly and inspection tasks, with varying numbers of repetitions and breaks. We also test three alternative power-form learning and forgetting curve models from the literature. The results show that the interference-adjusted model fits the data very well. The proposed learning and forgetting model and its individualized cumulative metrics can help identify struggling workers early and release precocious learners earlier than expected. As such, the model gives insights for managers on the occurrence of interference to enable individual learning support.

AlkuperäiskieliEnglanti
Artikkeli103257
Sivumäärä14
JulkaisuInternational Journal of Industrial Ergonomics
Vuosikerta88
DOI - pysyväislinkit
TilaJulkaistu - maalisk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Interference-adjusted power learning curve model with forgetting'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä