Interactive user intent modeling for eliciting priors of a normal linear model

Iiris Sundin, Luana Micallef, Pekka Marttinen, Muhammad Ammad-Ud-Din, Tomi Peltola, Marta Soare, Giulio Jacucci, Samuel Kaski

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaKonferenssiesitysScientific

Abstrakti

In this extended abstract, we present a novel interactive method to elicit the tacit
prior knowledge of an expert user for improving the accuracy of prediction models.
The main component of our method is an interactive user intent model that models
the domain expert’s knowledge on the relevance of different features for a prediction task. The user intent model selects the features on which to elicit user’s knowledge sequentially, based on the earlier user input. The results of a feasibility study show that our method improves prediction accuracy, when predicting the relative citation counts of scientific documents in a specific domain.
AlkuperäiskieliEnglanti
Sivut1-5
TilaJulkaistu - 2016
OKM-julkaisutyyppiEi sovellu
TapahtumaFuture of Interactive Learning Machines - Barcelona, Espanja
Kesto: 5 jouluk. 201610 jouluk. 2016

Conference

ConferenceFuture of Interactive Learning Machines
LyhennettäFILM
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso05/12/201610/12/2016

Sormenjälki

Sukella tutkimusaiheisiin 'Interactive user intent modeling for eliciting priors of a normal linear model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä