Integrating Bayesian Inference with Scanning Probe Experiments for Robust Identification of Surface Adsorbate Configurations

Jari Järvi, Benjamin Alldritt, Ondřej Krejčí, Milica Todorović, Peter Liljeroth, Patrick Rinke

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

9 Sitaatiot (Scopus)
111 Lataukset (Pure)

Abstrakti

Controlling the properties of organic/inorganic materials requires detailed knowledge of their molecular adsorption geometries. This is often unattainable, even with current state‐of‐the‐art tools. Visualizing the structure of complex non‐planar adsorbates with atomic force microscopy (AFM) is challenging, and identifying it computationally is intractable with conventional structure search. In this fresh approach, cross‐disciplinary tools are integrated for a robust and automated identification of 3D adsorbate configurations. Bayesian optimization is employed with first‐principles simulations for accurate and unbiased structure inference of multiple adsorbates. The corresponding AFM simulations then allow fingerprinting adsorbate structures that appear in AFM experimental images. In the instance of bulky (1S)‐camphor adsorbed on the Cu(111) surface, three matching AFM image contrasts are found, which allow correlating experimental image features to distinct cases of molecular adsorption.
AlkuperäiskieliEnglanti
Artikkeli2010853
Sivumäärä8
JulkaisuAdvanced Functional Materials
Vuosikerta31
Numero32
Varhainen verkossa julkaisun päivämäärä13 toukok. 2021
DOI - pysyväislinkit
TilaJulkaistu - 9 elok. 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Integrating Bayesian Inference with Scanning Probe Experiments for Robust Identification of Surface Adsorbate Configurations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä