Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide

Tutkimustuotos: Lehtiartikkeli

Standard

Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide. / Sky, T. N.; Johansen, K. M.; Venkatachalapathy, V.; Svensson, B. G.; Vines, L.; Tuomisto, F.

julkaisussa: Physical Review B, Vuosikerta 98, Nro 24, 245204, 28.12.2018, s. 1-24.

Tutkimustuotos: Lehtiartikkeli

Harvard

Sky, TN, Johansen, KM, Venkatachalapathy, V, Svensson, BG, Vines, L & Tuomisto, F 2018, 'Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide', Physical Review B, Vuosikerta. 98, Nro 24, 245204, Sivut 1-24. https://doi.org/10.1103/PhysRevB.98.245204

APA

Sky, T. N., Johansen, K. M., Venkatachalapathy, V., Svensson, B. G., Vines, L., & Tuomisto, F. (2018). Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide. Physical Review B, 98(24), 1-24. [245204]. https://doi.org/10.1103/PhysRevB.98.245204

Vancouver

Author

Sky, T. N. ; Johansen, K. M. ; Venkatachalapathy, V. ; Svensson, B. G. ; Vines, L. ; Tuomisto, F. / Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide. Julkaisussa: Physical Review B. 2018 ; Vuosikerta 98, Nro 24. Sivut 1-24.

Bibtex - Lataa

@article{4b8e154b8ca244abbc49f941001ca408,
title = "Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide",
abstract = "The influence of Fermi level position and annealing ambient on the zinc vacancy VZn generation and Al diffusion is studied in monocrystalline zinc oxide (ZnO). From secondary-ion mass spectrometry and positron annihilation spectroscopy results, a quadratic dependence between the concentrations of VZn and Al is established, demonstrating the Fermi level dependence of the formation of the electrically compensating -2 charge state of VZn in conductive n-type ZnO crystals. In contrast, thermal treatment in the zinc-rich ambient is shown to efficiently reduce the VZn concentration and related complexes. Using a reaction-diffusion model, the diffusion characteristics of Al at different donor background concentrations are fully accounted for by mobile (AlZnVZn)-pairs. These pairs form via the migration and reaction of isolated VZn2- with the essentially immobile AlZn+. We obtain a migration barrier for the (AlZnVZn)- pair of 2.4±0.2 eV, in good agreement with theoretical predictions. In addition to strongly alter the shape of the Al diffusion profiles, increasing the donor background concentration also results in an enhanced effective Al diffusivity, attributed to a reduction in the VZn2-formation energy as the Fermi level position increases.",
author = "Sky, {T. N.} and Johansen, {K. M.} and V. Venkatachalapathy and Svensson, {B. G.} and L. Vines and F. Tuomisto",
year = "2018",
month = "12",
day = "28",
doi = "10.1103/PhysRevB.98.245204",
language = "English",
volume = "98",
pages = "1--24",
journal = "Physical Review B (Condensed Matter and Materials Physics)",
issn = "2469-9950",
publisher = "American Physical Society",
number = "24",

}

RIS - Lataa

TY - JOUR

T1 - Influence of Fermi level position on vacancy-assisted diffusion of aluminum in zinc oxide

AU - Sky, T. N.

AU - Johansen, K. M.

AU - Venkatachalapathy, V.

AU - Svensson, B. G.

AU - Vines, L.

AU - Tuomisto, F.

PY - 2018/12/28

Y1 - 2018/12/28

N2 - The influence of Fermi level position and annealing ambient on the zinc vacancy VZn generation and Al diffusion is studied in monocrystalline zinc oxide (ZnO). From secondary-ion mass spectrometry and positron annihilation spectroscopy results, a quadratic dependence between the concentrations of VZn and Al is established, demonstrating the Fermi level dependence of the formation of the electrically compensating -2 charge state of VZn in conductive n-type ZnO crystals. In contrast, thermal treatment in the zinc-rich ambient is shown to efficiently reduce the VZn concentration and related complexes. Using a reaction-diffusion model, the diffusion characteristics of Al at different donor background concentrations are fully accounted for by mobile (AlZnVZn)-pairs. These pairs form via the migration and reaction of isolated VZn2- with the essentially immobile AlZn+. We obtain a migration barrier for the (AlZnVZn)- pair of 2.4±0.2 eV, in good agreement with theoretical predictions. In addition to strongly alter the shape of the Al diffusion profiles, increasing the donor background concentration also results in an enhanced effective Al diffusivity, attributed to a reduction in the VZn2-formation energy as the Fermi level position increases.

AB - The influence of Fermi level position and annealing ambient on the zinc vacancy VZn generation and Al diffusion is studied in monocrystalline zinc oxide (ZnO). From secondary-ion mass spectrometry and positron annihilation spectroscopy results, a quadratic dependence between the concentrations of VZn and Al is established, demonstrating the Fermi level dependence of the formation of the electrically compensating -2 charge state of VZn in conductive n-type ZnO crystals. In contrast, thermal treatment in the zinc-rich ambient is shown to efficiently reduce the VZn concentration and related complexes. Using a reaction-diffusion model, the diffusion characteristics of Al at different donor background concentrations are fully accounted for by mobile (AlZnVZn)-pairs. These pairs form via the migration and reaction of isolated VZn2- with the essentially immobile AlZn+. We obtain a migration barrier for the (AlZnVZn)- pair of 2.4±0.2 eV, in good agreement with theoretical predictions. In addition to strongly alter the shape of the Al diffusion profiles, increasing the donor background concentration also results in an enhanced effective Al diffusivity, attributed to a reduction in the VZn2-formation energy as the Fermi level position increases.

UR - http://www.scopus.com/inward/record.url?scp=85059541245&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.98.245204

DO - 10.1103/PhysRevB.98.245204

M3 - Article

VL - 98

SP - 1

EP - 24

JO - Physical Review B (Condensed Matter and Materials Physics)

JF - Physical Review B (Condensed Matter and Materials Physics)

SN - 2469-9950

IS - 24

M1 - 245204

ER -

ID: 31241708