Inference systems for network traffic control

Federico Montesino Pouzols, Diego R. Lopez, Angel Barriga Barros

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaChapterScientificvertaisarvioitu

    Abstrakti

    This chapter deals with control of network traffic in routers as well as end-to-end flows. First it is proposed an scheme for implementing end-to-end traffic control mechanisms through fuzzy inference systems. A comparative evaluation of simulation and implementation results from the fuzzy rate controler as compared to that of traditional TCP flow and rate control mechanisms is performed for a wide set of realistic scenarios. Then, fuzzy inference systems for traffic control in routers are designed. A particular proposal has been evaluated in realistic scenarios and is shown to be robust. The proposal is compared against the random early detection (RED) scheme. It is experimentally shown that fuzzy systems can provide better performance and better adaptation to different requirements with mechanisms that are easy to modify using linguistic knowledge.

    AlkuperäiskieliEnglanti
    OtsikkoMining and Control of Network Traffic by Computational Intelligence
    Sivut191-262
    Sivumäärä72
    Vuosikerta342
    DOI - pysyväislinkit
    TilaJulkaistu - 2011
    OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

    Julkaisusarja

    NimiStudies in Computational Intelligence
    Vuosikerta342
    ISSN (painettu)1860-949X

    Sormenjälki

    Sukella tutkimusaiheisiin 'Inference systems for network traffic control'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä