Increased p-type conductivity in GaNxSb1-x, experimental and theoretical aspects

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • University of Liverpool
  • University of Warwick

Kuvaus

The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaNxSb1-x layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gap decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material. (C) 2015 AIP Publishing LLC.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli085708
Sivut1-9
Sivumäärä9
JulkaisuJournal of Applied Physics
Vuosikerta118
Numero8
TilaJulkaistu - 28 elokuuta 2015
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 1998622