Incorporation of parameter prediction models of different fidelity into job shop scheduling

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

Kuvaus

Scheduling of industrial job shop processes is normally conducted using estimates of parameters (e.g. processing times) defining the optimization problem. Inaccuracy in these estimated parameters can significantly affect the optimality, or even feasibility, of the scheduling solution. In this work, we incorporate data-driven parameter prediction models of different fidelity into a unit-specific continuous time scheduling model, and investigate the dependency of the solution quality on the prediction model fidelity. Our high-fidelity prediction model is based on Gaussian processes (GP); more specifically we use the maximum a posteriori probability (MAP) estimate. The low and medium-fidelity prediction models rely on determining the average processing time or average processing rate, respectively, from the dataset. In our test case, involving prediction of taxi durations in New York City, the use of GP prediction model yielded, on average, 5.8% and 1.8% shorter realized make spans in comparison to using the low and medium-fidelity prediction models, respectively.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut142-147
JulkaisuIFAC-PapersOnLine
Vuosikerta52
Numero1
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIFAC Symposium on Dynamics and Control of Process Systems, including Biosystems - Florianopolis, Brasilia
Kesto: 23 huhtikuuta 201926 huhtikuuta 2019
Konferenssinumero: 12
http://dycopscab2019.sites.ufsc.br/
http://dycopscab2019.sites.ufsc.br/index.html

Lataa tilasto

Ei tietoja saatavilla

ID: 33956209