Improving the wastewater treatment plant performance through model predictive control strategies

Chiara Foscoliano, Stefania Del Vigo, Michela Mulas, Stefania Tronci

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaChapterScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

Using the Benchmark Simulation Model No. 1 as virtual plant, the development of model based control strategies for an activated sludge process was addressed in this work. The dynamic matrix control algorithm was used to obtain the optimal control of ammonia and nitrate concentration by using dissolved oxygen concentrations in the bioreactor, and internal recycle flow rate as manipulated variables. The main goal of the proposed control strategies was the minimization of aeration and pumping energy consumption by guaranteeing good nitrogen removal efficiency. In order to mimic a more realistic situation, process model identification was carried out considering time varying inputs. Recurrent neural network were used to describe the required input-output relationships. Results showed that ammonia and nitrogen removal was enhanced even in the coldest season, with a reduction of energy consumption if compared with BSM1 default control strategy.

AlkuperäiskieliEnglanti
Otsikko26 European Symposium on Computer Aided Process Engineering, 2016
KustantajaElsevier
Sivut1863-1868
Sivumäärä6
Vuosikerta38
ISBN (painettu)9780444634283
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa
TapahtumaEuropean Symposium on Computer Aided Process Engineering - Grand Hotel Bernardin Congress Centre, Portorož, Slovenia
Kesto: 12 kesäk. 201615 kesäk. 2016
Konferenssinumero: 26
http://escape26.um.si/

Julkaisusarja

NimiComputer Aided Chemical Engineering
Vuosikerta38
ISSN (painettu)15707946

Conference

ConferenceEuropean Symposium on Computer Aided Process Engineering
LyhennettäESPACE
Maa/AlueSlovenia
KaupunkiPortorož
Ajanjakso12/06/201615/06/2016
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Improving the wastewater treatment plant performance through model predictive control strategies'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä