Improving the performance of algorithms to find communities in networks

R.K. Darst, Z. Nussinov, Santo Fortunato

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

17 Sitaatiot (Scopus)
105 Lataukset (Pure)


Most algorithms to detect communities in networks typically work without any information on the cluster structure to be found, as one has no a priori knowledge of it, in general. Not surprisingly, knowing some features of the unknown partition could help its identification, yielding an improvement of the performance of the method. Here we show that, if the number of clusters was known beforehand, standard methods, like modularity optimization, would considerably gain in accuracy, mitigating the severe resolution bias that undermines the reliability of the results of the original unconstrained version. The number of clusters can be inferred from the spectra of the recently introduced nonbacktracking and flow matrices, even in benchmark graphs with realistic community structure. The limit of such a two-step procedure is the overhead of the computation of the spectra.
JulkaisuPhysical Review E
DOI - pysyväislinkit
TilaJulkaistu - 2014
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Improving the performance of algorithms to find communities in networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Laitteet


    Mikko Hakala (Manager)

    Perustieteiden korkeakoulu

    Laitteistot/tilat: Facility

  • Siteeraa tätä