Improving source estimation of retinotopic MEG responses by combining data from multiple subjects

Paavo Hietala*, Ilmari Kurki, Aapo Hyvärinen, Lauri Parkkonen, Linda Henriksson

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

19 Lataukset (Pure)

Abstrakti

Magnetoencephalography (MEG) is a functional brain imaging modality, which measures the weak magnetic field arising from neuronal activity. The source amplitudes and locations are estimated from the sensor data by solving an ill-posed inverse problem. Commonly used solutions for these problems operate on data from individual subjects. Combining the measurements of multiple subjects has been suggested to increase the spatial resolution of MEG by leveraging the intersubject differences for increased information. In this article, we compare 3 multisubject analysis methods on a retinotopic mapping dataset recorded from 20 subjects. The compared methods are eLORETA with source-space averaging, minimum Wasserstein estimates (MWE), and MWE with source-space averaging. The results were quantified by the geodesic distances between early (60–100 ms) MEG peak activations and fMRI-based retinotopic target points in the primary visual cortex (V1). By increasing the subject count from 1 to 10, the median distances decreased by 6.6–9.4 mm (33–46%) compared with the single-subject median distances of around 20 mm. The observed peak activation locations with multisubject analysis also comply better with the established retinotopic maps of the primary visual cortex. Our results suggest that higher spatial accuracy can be achieved by pooling data from multiple subjects. The strength of MWE lies in individualized and sparse source estimates, but in our data, averaging eLORETA estimates across individuals in source space outperformed MWE in spatial accuracy.
AlkuperäiskieliEnglanti
Sivut1-15
Sivumäärä15
JulkaisuImaging Neuroscience
Vuosikerta2
DOI - pysyväislinkit
TilaJulkaistu - 12 elok. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Improving source estimation of retinotopic MEG responses by combining data from multiple subjects'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä