Abstrakti

Deep neural networks (DNNs) excel on clean images but struggle with corrupted ones. Incorporating specific corruptions into the data augmentation pipeline can improve robustness to those corruptions but may harm performance on clean images and other types of distortion. In this paper, we introduce an alternative approach that improves the robustness of DNNs to a wide range of corruptions without compromising accuracy on clean images. We first demonstrate that input perturbations can be mimicked by multiplicative perturbations in the weight space. Leveraging this, we propose Data Augmentation via Multiplicative Perturbation (DAMP), a training method that optimizes DNNs under random multiplicative weight perturbations. We also examine the recently proposed Adaptive Sharpness-Aware Minimization (ASAM) and show that it optimizes DNNs under adversarial multiplicative weight perturbations. Experiments on image classification datasets (CIFAR-10/100, TinyImageNet and ImageNet) and neural network architectures (ResNet50, ViT-S/16, ViT-B/16) show that DAMP enhances model generalization performance in the presence of corruptions across different settings. Notably, DAMP is able to train a ViT-S/16 on ImageNet from scratch, reaching the top-1 error of 23.7% which is comparable to ResNet50 without extensive data augmentations.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 37 (NeurIPS 2024)
ToimittajatA. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang
KustantajaCurran Associates Inc.
ISBN (painettu)9798331314385
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Kanada
Kesto: 10 jouluk. 202415 jouluk. 2024
Konferenssinumero: 38
https://neurips.cc/Conferences/2024

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaCurran Associates, Inc.
Vuosikerta37
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso10/12/202415/12/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Improving robustness to corruptions with multiplicative weight perturbations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä