Improving BERT Pretraining with Syntactic Supervision

Giorgos Tziafas, Kokos Kogkalidis, Gijs Wijnholds, Michael Moortgat

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Bidirectional masked Transformers have become the core theme in the current NLP landscape. Despite their impressive benchmarks, a recurring theme in recent research has been to question such models’ capacity for syntactic
generalization. In this work, we seek to address this question by adding a supervised, token-level supertagging objective to standard unsupervised pretraining, enabling the explicit incorporation of syntactic biases into the network’s training dynamics. Our approach is straightforward to implement, induces a marginal computational overhead and is general enough to adapt to a variety of settings. We apply our methodology on Lassy Large, an automatically annotated corpus of written Dutch. Our experiments suggest that our syntax-aware model performs on par with established baselines, despite Lassy Large being one order of magnitude smaller than commonly used corpora.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2023 CLASP Conference on Learning with Small Data
KustantajaAssociation for Computational Linguistics
Sivut176-184
ISBN (elektroninen)979-8-89176-000-4
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaLearning with Small Data - Gothenburg, Ruotsi
Kesto: 11 syysk. 202312 syysk. 2023

Julkaisusarja

NimiCLASP Papers in Computational Linguistics
KustantajaAssociation for Computational Linguistics
Vuosikerta5
ISSN (elektroninen)2002-9764

Conference

ConferenceLearning with Small Data
LyhennettäLSD
Maa/AlueRuotsi
KaupunkiGothenburg
Ajanjakso11/09/202312/09/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Improving BERT Pretraining with Syntactic Supervision'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä