Improved Spoken Emotion Recognition With Combined Segment-Based Processing And Triplet Loss

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

22 Lataukset (Pure)

Abstrakti

Traditional spoken emotion recognition solutions often process entire utterances all at once, ignoring the emotional variability within the speech. This shortcoming, especially plaguing end-to-end models, prompted us to investigate a segment-based technique processing only short parts of the audio, improving the recognition accuracy across three diverse emotion datasets. Furthermore, we employed a triplet loss to increase inter-class separability, demonstrating that combining it effectively with segment-based processing within our multi-task learning framework leads to improvements on both English and Finnish datasets. Our proposed method achieves 8.1% unweighted average recall improvement over the baseline on the IEMOCAP, 12% on the RAVDESS, and 7.2% on the FESC dataset. The results also indicate that vocalised emotions are strongly concentrated in short segments of speech, and new methods are needed to exploit this fact.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 7th International Conference on Natural Language and Speech Processing (ICNLSP 2024)
KustantajaAssociation for Computational Linguistics
Sivut47-54
Sivumäärä8
ISBN (elektroninen)979-8-89176-165-0
TilaJulkaistu - 22 lokak. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Natural Language and Speech Processing - Trento, Italia
Kesto: 19 lokak. 202420 lokak. 2024
https://www.icnlsp.org/2024welcome/

Conference

ConferenceInternational Conference on Natural Language and Speech Processing
LyhennettäICNLSP
Maa/AlueItalia
KaupunkiTrento
Ajanjakso19/10/202420/10/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Improved Spoken Emotion Recognition With Combined Segment-Based Processing And Triplet Loss'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä