Abstrakti
An improved proportionate least mean square/fourth (IPLMS/F) equalizer is proposed in this paper, and applied to underwater acoustic communications in real experiment. In addition to improving the performance of least mean squares (LMS) equalizer, the proposed IPLMS/F equalizer maintains the simplicity and stability of LMS. The advantage of the proposed IPLMS/F equalizer is due to introduction of a proportional update matrix. The diagonal elements of this matrix are determined by the equalizer tap magnitudes to improve the sparsity level estimate, and thus, further improve the equalizer performance. The performance of IPLMS/F is verified by applying it to the experimental data from the 9th Chinese National Arctic Research Expedition. The results show that IPLMS/F exhibits fastest convergence speed and it has the lowest bit error rate compared with LMS and LMS/F, indicating its effectiveness and reliability in practical applications.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023 |
Kustantaja | IEEE |
Sivut | 141-145 |
Sivumäärä | 5 |
ISBN (elektroninen) | 979-8-3503-4452-3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing - Herradura, Costa Rica Kesto: 10 jouluk. 2023 → 13 jouluk. 2023 Konferenssinumero: 9 |
Julkaisusarja
Nimi | 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023 |
---|
Workshop
Workshop | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing |
---|---|
Lyhennettä | CAMSAP |
Maa/Alue | Costa Rica |
Kaupunki | Herradura |
Ajanjakso | 10/12/2023 → 13/12/2023 |