Improved learning of k-parities

Arnab Bhattacharyya, Ameet Gadekar*, Ninad Rajgopal

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

We consider the problem of learning k-parities in the online mistake-bound model: given a hidden vector (Formula Presented) where the hamming weight of x is k and a sequence of “questions” (Formula Presented), where the algorithm must reply to each question with (Formula Presented), what is the best trade-off between the number of mistakes made by the algorithm and its time complexity? We improve the previous best result of Buhrman et al. [BGM10] by an (Formula Presented) factor in the time complexity. Next, we consider the problem of learning k-parities in the PAC model in the presence of random classification noise of rate (Formula Presented). Here, we observe that even in the presence of classification noise of non-trivial rate, it is possible to learn k-parities in time better than (Formula Presented), whereas the current best algorithm for learning noisy k-parities, due to Grigorescu et al. [GRV11], inherently requires time (Formula Presented) even when the noise rate is polynomially small.

AlkuperäiskieliEnglanti
OtsikkoComputing and Combinatorics - 24th International Conference, COCOON 2018, Proceedings
KustantajaSPRINGER
Sivut542-553
Sivumäärä12
ISBN (painettu)9783319947754
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Computing and Combinatorics Conference - Qing Dao, Kiina
Kesto: 2 heinäk. 20184 heinäk. 2018
Konferenssinumero: 24

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta10976 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Computing and Combinatorics Conference
LyhennettäCOCOON
Maa/AlueKiina
KaupunkiQing Dao
Ajanjakso02/07/201804/07/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Improved learning of k-parities'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä