Abstrakti
We consider the problem of learning k-parities in the online mistake-bound model: given a hidden vector (Formula Presented) where the hamming weight of x is k and a sequence of “questions” (Formula Presented), where the algorithm must reply to each question with (Formula Presented), what is the best trade-off between the number of mistakes made by the algorithm and its time complexity? We improve the previous best result of Buhrman et al. [BGM10] by an (Formula Presented) factor in the time complexity. Next, we consider the problem of learning k-parities in the PAC model in the presence of random classification noise of rate (Formula Presented). Here, we observe that even in the presence of classification noise of non-trivial rate, it is possible to learn k-parities in time better than (Formula Presented), whereas the current best algorithm for learning noisy k-parities, due to Grigorescu et al. [GRV11], inherently requires time (Formula Presented) even when the noise rate is polynomially small.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Computing and Combinatorics - 24th International Conference, COCOON 2018, Proceedings |
Kustantaja | SPRINGER |
Sivut | 542-553 |
Sivumäärä | 12 |
ISBN (painettu) | 9783319947754 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 tammik. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Computing and Combinatorics Conference - Qing Dao, Kiina Kesto: 2 heinäk. 2018 → 4 heinäk. 2018 Konferenssinumero: 24 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Vuosikerta | 10976 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Conference
Conference | International Computing and Combinatorics Conference |
---|---|
Lyhennettä | COCOON |
Maa/Alue | Kiina |
Kaupunki | Qing Dao |
Ajanjakso | 02/07/2018 → 04/07/2018 |