Abstrakti
Sluggish anode kinetics and serious carbon deposition are two major obstacles to developing hydrocarbon fueled solid oxide fuel cells. A highly active and stable perovskite La0.5Ba0.5FeO3-δ anode material is studied in this work. The oxygen surface exchange and charge transfer steps are the rate-determining steps of the anode process, and the former is accelerated with fluorine doping on the anion sites due to the lowering of metal-oxygen bond energy. The oxygen surface exchange coefficients of La0.5Ba0.5FeO3-δ and La0.5Ba0.5FeO2.9-δF0.1 at 850 °C are 1.4 × 10−4 and 2.8 × 10−4 cm s−1, respectively. A single cell supported by a 300 μm-thick La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte layer with La0.5Ba0.5FeO3-δ anode shows maximum power densities of 1446 and 691 mW cm−2 at 850 °C with wet hydrogen and methane fuels, respectively, which increase to 1860 and 809 mW cm−2 respectively when La0.5Ba0.5FeO2.9-δF0.1 is used as the anode. The cell exhibits a short-term durability of 40 h using wet methane as fuel without carbon deposition on the anode.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 230932 |
Julkaisu | Journal of Power Sources |
Vuosikerta | 521 |
Varhainen verkossa julkaisun päivämäärä | 21 jouluk. 2021 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 helmik. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |