Improved analytical model of induction machine for digital twin application

Victor Mukherjee, Tatjana Martinovski, Aron Szucs, Jan Westerlund, Anouar Belahcen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

40 Lataukset (Pure)

Abstrakti

This paper presents a saturable analytical model of induction machines, with a systematic approach for segregating the electromagnetic losses. The proposed model is based on the equivalent circuit of the machine, which has been augmented to account for different loss components. The segregation of different loss components in stator and rotor have been improved by considering the loading, skin effect and field-weakening operation. The required parameters of the model are identified from a well-defined set of finite element analysis of the machine. The proposed model and the identification methodology have been tested on two different induction machines. In both cases, the finite element computations are validated with laboratory measurements, and the analytical model is validated against the finite element model. The results show that the proposed model is more accurate than the conventional ones from the literature, and thus it can be used as a component while building a digital twin of the induction machine, and inserted into a virtual simulation software for real-time thermal management for example.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the International Conference on Electrical Machines, ICEM 2020
KustantajaIEEE
Sivut183-189
Sivumäärä7
ISBN (elektroninen)9781728199450
DOI - pysyväislinkit
TilaJulkaistu - 23 elokuuta 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Electrical Machines - Virtual, Online
Kesto: 23 elokuuta 202026 elokuuta 2020
Konferenssinumero: 25

Julkaisusarja

NimiProceedings (International Conference on Electrical Machines)
KustantajaIEEE
ISSN (painettu)2381-4802
ISSN (elektroninen)2473-2087

Conference

ConferenceInternational Conference on Electrical Machines
LyhennettäICEM
KaupunkiVirtual, Online
Ajanjakso23/08/202026/08/2020
MuuVirtual Conference

Sormenjälki Sukella tutkimusaiheisiin 'Improved analytical model of induction machine for digital twin application'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä