Imbalanced multiclass classification with active learning in strip rolling process

Jifei Deng, Jie Sun*, Wen Peng, Dianhua Zhang, Valeriy Vyatkin

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

In the strip rolling process, conventional supervised methods cannot effectively address data with an imbalanced number of normal and faulty instances. In this paper, based on a deep belief network, a resampling method is combined with active learning (AL) to address imbalanced multiclass problems. The support vector machine-based synthetic minority oversampling technique was adapted to enrich the training data, whereas the true data distribution and model generalization were changed. A new selection strategy of AL is proposed that forms a function using uncertainty and diversity. AL uses an optimizing set that has a similar distribution with the whole dataset to calculate the informativeness of instances to optimize the model. Based on this step, the model study instances approach decision boundaries to promote performance. The proposed method is validated by five UCI benchmark datasets and strip rolling data, and experiments show that it outperforms conventional methods in tackling imbalanced multiclass problems.

AlkuperäiskieliEnglanti
Artikkeli109754
Sivumäärä9
JulkaisuKNOWLEDGE-BASED SYSTEMS
Vuosikerta255
DOI - pysyväislinkit
TilaJulkaistu - 14 marrask. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Imbalanced multiclass classification with active learning in strip rolling process'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä