Identifying Chern numbers of superconductors from local measurements

Paul Baireuther, Marcin Płodzién, Teemu Ojanen, Jakub Tworzydło, Timo Hyart

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

34 Lataukset (Pure)

Abstrakti

Fascination in topological materials originates from their remarkable response properties and exotic quasiparticles which can be utilized in quantum technologies. In particular, large-scale efforts are currently focused on realizing topological superconductors and their Majorana excitations. However, determining the topological nature of superconductors with current experimental probes is an outstanding challenge. This shortcoming has become increasingly pressing due to rapidly developing designer platforms which are theorized to display very rich topology and are better accessed by local probes rather than transport experiments. We introduce a robust machine learning protocol for classifying the topological states of two-dimensional (2D) chiral superconductors and insulators from local density of states (LDOS) data. Since the LDOS can be measured with standard experimental techniques, our protocol contributes to overcoming the almost three decades standing problem of identifying the topological phase of 2D superconductors with broken time-reversal symmetry.

AlkuperäiskieliEnglanti
Artikkeli087
JulkaisuSciPost physics core
Vuosikerta6
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Identifying Chern numbers of superconductors from local measurements'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä