ICA of Complex Valued Signals: A Fast and Robust Deflationary Algorithm

Ella Bingham, Aapo Hyvärinen

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

    30 Sitaatiot (Scopus)

    Abstrakti

    Separation of complex valued signals is a frequently arising problem in signal processing. In this article it is assumed that the original, complex valued source signals are mutually statistically independent, and the problem is solved by the independent component analysis (ICA) model. ICA is a statistical method for transforming an observed multidimensional random vector into components that are mutually as independent as possible. In this article, a fast fixed-point type algorithm that is capable of separating complex valued, linearly mixed source signals is presented and its computational efficiency is shown by simulations. We also present a theorem on the local consistency of the estimator given by the algorithm.
    AlkuperäiskieliEnglanti
    OtsikkoProceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium
    KustantajaIEEE
    Sivut357-362
    ISBN (elektroninen)0-7695-0619-4
    TilaJulkaistu - 2000
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaInternational Joint Conference on Neural Networks - Como, Italia
    Kesto: 24 heinäk. 200027 heinäk. 2000

    Conference

    ConferenceInternational Joint Conference on Neural Networks
    LyhennettäIJCNN
    Maa/AlueItalia
    KaupunkiComo
    Ajanjakso24/07/200027/07/2000

    Tutkimusalat

    • complex valued signals
    • deflationary separation
    • independent component analysis

    Sormenjälki

    Sukella tutkimusaiheisiin 'ICA of Complex Valued Signals: A Fast and Robust Deflationary Algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä