Hybrid anti-prematuration optimization algorithm

Qiaoling Wang, Xiaozhi Gao, Changhong Wang*, Furong Liu

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems. This paper presents a hybrid optimization technique combining two heuristic optimization methods, artificial immune system (AIS) and particle swarm optimization (PSO), together in searching for the global optima of nonlinear functions. The proposed algorithm, namely hybrid anti-prematuration optimization method, contains four significant operators, i.e. swarm operator, cloning operator, suppression operator, and receptor editing operator. The swarm operator is inspired by the particle swarm intelligence, and the clone operator, suppression operator, and receptor editing operator are gleaned by the artificial immune system. The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate. It is also employed to cope with a real-world optimization problem.

AlkuperäiskieliEnglanti
Sivut503-508
Sivumäärä6
JulkaisuJournal of Systems Engineering and Electronics
Vuosikerta21
Numero3
DOI - pysyväislinkit
TilaJulkaistu - kesäkuuta 2010
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Hybrid anti-prematuration optimization algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä