How Suitable Is Your Naturalistic Dataset for Theory-based User Modeling?

Aini Putkonen, Aurélien Nioche, Ville Tanskanen, Arto Klami, Antti Oulasvirta

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)
74 Lataukset (Pure)

Abstrakti

Theory-based, or "white-box,"models come with a major benefit that makes them appealing for deployment in user modeling: their parameters are interpretable. However, most theory-based models have been developed in controlled settings, in which researchers determine the experimental design. In contrast, real-world application of these models demands setups that are beyond developer control. In non-experimental, naturalistic settings, the tasks with which users are presented may be very limited, and it is not clear that model parameters can be reliably inferred. This paper describes a technique for assessing whether a naturalistic dataset is suitable for use with a theory-based model. The proposed parameter recovery technique can warn against possible over-confidence in inferred model parameters. This technique also can be used to study conditions under which parameter inference is feasible. The method is demonstrated for two models of decision-making under risk with naturalistic data from a turn-based game.

AlkuperäiskieliEnglanti
OtsikkoUMAP2022 - Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization
KustantajaACM
Sivut179-190
Sivumäärä12
ISBN (elektroninen)978-1-4503-9207-5
DOI - pysyväislinkit
TilaJulkaistu - 7 huhtik. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on User Modeling, Adaptation and Personalization - Virtual, Online, Espanja
Kesto: 4 heinäk. 20227 heinäk. 2022

Julkaisusarja

NimiUMAP2022 - Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization

Conference

ConferenceConference on User Modeling, Adaptation and Personalization
LyhennettäUMAP
Maa/AlueEspanja
KaupunkiVirtual, Online
Ajanjakso04/07/202207/07/2022

Sormenjälki

Sukella tutkimusaiheisiin 'How Suitable Is Your Naturalistic Dataset for Theory-based User Modeling?'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä