Abstrakti
We investigate the number of real zeros of a univariate k-sparse polynomial f over the reals, when the coefficients of f come from independent standard normal distributions. Recently Bürgisser, Ergür and Tonelli-Cueto showed that the expected number of real zeros of f in such cases is bounded by [EQUATION]. In this work, we improve the bound to [EQUATION] and also show that this bound is tight by constructing a family of sparse support whose expected number of real zeros is lower bounded by [EQUATION]. Our main technique is an alternative formulation of the Kac integral by Edelman-Kostlan which allows us to bound the expected number of zeros of f in terms of the expected number of zeros of polynomials of lower sparsity. Using our technique, we also recover the O (log n) bound on the expected number of real zeros of a dense polynomial of degree n with coefficients coming from independent standard normal distributions.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | ISSAC 2020 - Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation |
Toimittajat | Angelos Mantzaflaris |
Kustantaja | ACM |
Sivut | 273-280 |
Sivumäärä | 8 |
ISBN (elektroninen) | 9781450371001 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 20 heinäk. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Symposium on Symbolic and Algebraic Computation - Virtual, Kalamata, Kreikka Kesto: 20 heinäk. 2020 → 23 heinäk. 2020 Konferenssinumero: 45 https://issac-conference.org/2020/program.php |
Conference
Conference | International Symposium on Symbolic and Algebraic Computation |
---|---|
Lyhennettä | ISSAC |
Maa/Alue | Kreikka |
Kaupunki | Kalamata |
Ajanjakso | 20/07/2020 → 23/07/2020 |
www-osoite |