How Many Zeros of a Random Sparse Polynomial Are Real?

Gorav Jindal, Anurag Pandey, Himanshu Shukla, Charilaos Zisopoulos

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

We investigate the number of real zeros of a univariate k-sparse polynomial f over the reals, when the coefficients of f come from independent standard normal distributions. Recently Bürgisser, Ergür and Tonelli-Cueto showed that the expected number of real zeros of f in such cases is bounded by [EQUATION]. In this work, we improve the bound to [EQUATION] and also show that this bound is tight by constructing a family of sparse support whose expected number of real zeros is lower bounded by [EQUATION]. Our main technique is an alternative formulation of the Kac integral by Edelman-Kostlan which allows us to bound the expected number of zeros of f in terms of the expected number of zeros of polynomials of lower sparsity. Using our technique, we also recover the O (log n) bound on the expected number of real zeros of a dense polynomial of degree n with coefficients coming from independent standard normal distributions.
AlkuperäiskieliEnglanti
OtsikkoISSAC 2020 - Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
ToimittajatAngelos Mantzaflaris
KustantajaACM
Sivut273-280
Sivumäärä8
ISBN (elektroninen)9781450371001
DOI - pysyväislinkit
TilaJulkaistu - 20 heinäk. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Symposium on Symbolic and Algebraic Computation - Virtual, Kalamata, Kreikka
Kesto: 20 heinäk. 202023 heinäk. 2020
Konferenssinumero: 45
https://issac-conference.org/2020/program.php

Conference

ConferenceInternational Symposium on Symbolic and Algebraic Computation
LyhennettäISSAC
Maa/AlueKreikka
KaupunkiKalamata
Ajanjakso20/07/202023/07/2020
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'How Many Zeros of a Random Sparse Polynomial Are Real?'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä