Horizon detection and tracking in sea-ice conditions using machine vision

Andrei Sandru*, Pentti Kujala, Arto Visala*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

42 Lataukset (Pure)

Abstrakti

An automated process is proposed for horizon detection and tracking using machine vision cameras and in polar, sea-ice conditions. These conditions present unique challenges for machine vision applications, such as a large amount of clutter (e.g. icebergs) and secondary edge lines from broken ice pieces. The process is divided in two parts: a more computationally expensive, yet robust detection algorithm in the first stage, based on Convolutional Neural Networks, and used to detect the horizon line in an arbitrary sea-ice image; followed by a tracking algorithm, responsible of efficiently detecting the horizon line in the subsequent images of a sequence. We propose two tracking algorithms, one based on the traditional Canny and Hough line detection methods; and a second novel approach using entropy as a measure of randomness, to segment between sea-ice and sky. Our automated process was compared to manually obtained ground-truth data and the results indicate good agreement, especially for the texture-based tracking algorithm.

AlkuperäiskieliEnglanti
OtsikkoIFAC-PapersOnLine
ToimittajatHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
KustantajaElsevier
Sivut6724-6730
Sivumäärä7
Painos2
ISBN (elektroninen)9781713872344
DOI - pysyväislinkit
TilaJulkaistu - 1 heinäk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIFAC World Congress - Yokohama, Japani
Kesto: 9 heinäk. 202314 heinäk. 2023
Konferenssinumero: 22

Julkaisusarja

NimiIFAC-PapersOnLine
Numero2
Vuosikerta56
ISSN (elektroninen)2405-8963

Conference

ConferenceIFAC World Congress
Maa/AlueJapani
KaupunkiYokohama
Ajanjakso09/07/202314/07/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Horizon detection and tracking in sea-ice conditions using machine vision'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä