Abstrakti
An automated process is proposed for horizon detection and tracking using machine vision cameras and in polar, sea-ice conditions. These conditions present unique challenges for machine vision applications, such as a large amount of clutter (e.g. icebergs) and secondary edge lines from broken ice pieces. The process is divided in two parts: a more computationally expensive, yet robust detection algorithm in the first stage, based on Convolutional Neural Networks, and used to detect the horizon line in an arbitrary sea-ice image; followed by a tracking algorithm, responsible of efficiently detecting the horizon line in the subsequent images of a sequence. We propose two tracking algorithms, one based on the traditional Canny and Hough line detection methods; and a second novel approach using entropy as a measure of randomness, to segment between sea-ice and sky. Our automated process was compared to manually obtained ground-truth data and the results indicate good agreement, especially for the texture-based tracking algorithm.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | IFAC-PapersOnLine |
Toimittajat | Hideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita |
Kustantaja | Elsevier |
Sivut | 6724-6730 |
Sivumäärä | 7 |
Painos | 2 |
ISBN (elektroninen) | 9781713872344 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 heinäk. 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IFAC World Congress - Yokohama, Japani Kesto: 9 heinäk. 2023 → 14 heinäk. 2023 Konferenssinumero: 22 |
Julkaisusarja
Nimi | IFAC-PapersOnLine |
---|---|
Numero | 2 |
Vuosikerta | 56 |
ISSN (elektroninen) | 2405-8963 |
Conference
Conference | IFAC World Congress |
---|---|
Maa/Alue | Japani |
Kaupunki | Yokohama |
Ajanjakso | 09/07/2023 → 14/07/2023 |