Abstrakti
End-to-end machine learning (ML) in Internet of Things (IoT) Cloud systems consists of multiple processes, covering data, model, and service engineering, and involves multiple stakeholders. Therefore, to be able to explain ML to relevant stakeholders, it is important to identify explainability requirements in a holistic manner. In this paper, we present our methodology to address explainability requirements for end-to-end ML in developing ML services to be deployed within IoT Cloud systems. We identify and classify explainability requirements engineering through (i) involvement of relevant stakeholders, (ii) end-to-end data, model, and service engineering processes, and (iii) multiple explainability aspects. We present our work with a case study of predictive maintenance for Base Transceiver Stations (BTS) in the telco domain.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 29th IEEE International Requirements Engineering Conference Workshops, REW 2021 |
Toimittajat | Tao Yue, Mehdi Mirakhorli |
Kustantaja | IEEE |
Sivut | 188-194 |
Sivumäärä | 7 |
ISBN (elektroninen) | 978-1-6654-1898-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - syysk. 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Workshop on Requirements Engineering for Explainable Systems - South Bend, Yhdysvallat Kesto: 20 syysk. 2021 → 21 syysk. 2021 Konferenssinumero: 1 |
Julkaisusarja
Nimi | Proceedings of the IEEE International Conference on Requirements Engineering |
---|---|
ISSN (painettu) | 1090-705X |
ISSN (elektroninen) | 2332-6441 |
Workshop
Workshop | International Workshop on Requirements Engineering for Explainable Systems |
---|---|
Lyhennettä | RE4ES |
Maa/Alue | Yhdysvallat |
Kaupunki | South Bend |
Ajanjakso | 20/09/2021 → 21/09/2021 |