Highly scalable parallel collaborative filtering algorithm

Ankur Narang*, Raj Gupta, Anupam Joshi, Vikas K. Garg

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

12 Sitaatiot (Scopus)

Abstrakti

Collaborative filtering (CF) based recommender systems have gained wide popularity in Internet companies like Amazon, Netflix, Google News, and others. These systems make automatic predictions about the interests of a user by inferring from information about like-minded users. Real-time CF on highly sparse massive datasets, while achieving a high prediction accuracy, is a computationally challenging problem. In this paper, we present the design of a soft real-time (around 1 min.) parallel CF algorithm based on the Concept Decomposition technique [1]. Our parallel algorithm has been optimized for multicore/many-core architectures while maintaining the prediction accuracy of 0.84 RMSE. Using the Netflix dataset, we demonstrate the performance and scalability of our algorithm (in both batch mode and online mode) on a 32-core Power6 based SMP system. Our parallel algorithm delivered training time of 64s on the full Netflix dataset and prediction time of 4.5s on 1.4M ratings (3.2μ s per rating prediction). This is 12.6x better than the best known sequential training time and around 33x better than the best known sequential prediction time [2], along with high accuracy (0.84 RMSE). To the best of our knowledge, this is also the best known parallel performance at such high accuracy.

AlkuperäiskieliEnglanti
Otsikko17th International Conference on High Performance Computing, HiPC 2010
DOI - pysyväislinkit
TilaJulkaistu - 2010
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on High Performance Computing - Goa, Intia
Kesto: 19 jouluk. 201022 jouluk. 2010
Konferenssinumero: 17

Conference

ConferenceInternational Conference on High Performance Computing
LyhennettäHiPC
Maa/AlueIntia
KaupunkiGoa
Ajanjakso19/12/201022/12/2010

Sormenjälki

Sukella tutkimusaiheisiin 'Highly scalable parallel collaborative filtering algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä