Hamiltonian Inference from Dynamical Excitations in Confined Quantum Magnets

Netta Karjalainen, Zina Lippo, Guangze Chen, Rouven Koch, Adolfo Otero Fumega, Jose Lado

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

45 Lataukset (Pure)

Abstrakti

Quantum-disordered models provide a versatile platform to explore the emergence of quantum excitations in many-body systems. The engineering of spin models at the atomic scale with scanning tunneling microscopy and the local imaging of excitations with electrically driven spin resonance has risen as a powerful strategy to image spin excitations in finite quantum spin systems. Here, focusing on S=1/2 lattices as realized by Ti in MgO, we show that dynamical spin excitations provide a robust strategy to infer the nature of the underlying Hamiltonian. We show that finite-size interference of the dynamical many-body spin excitations of a generalized long-range Heisenberg model allows the underlying spin couplings to be inferred. We show that the spatial distribution of local spin excitations in Ti islands and ladders directly correlates with the underlying ground state in the thermodynamic limit. Using a supervised-learning algorithm, we demonstrate that the different parameters of the Hamiltonian can be extracted by providing the spatially dependent and frequency-dependent local excitations that can be directly measured by electrically driven spin resonance with scanning tunneling microscopy. Our results put forward local dynamical excitations in confined quantum spin models as versatile witnesses of the underlying ground state, providing an experimentally robust strategy for Hamiltonian inference in complex real spin models.
AlkuperäiskieliEnglanti
Artikkeli024054
Sivut1-11
Sivumäärä11
JulkaisuPhysical Review Applied
Vuosikerta20
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 22 elok. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Hamiltonian Inference from Dynamical Excitations in Confined Quantum Magnets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä