Abstrakti
This paper presents our approach for supporting machine learning (ML)-based analytics of quality of experience (QoE) related issues in a variety of Radio Access Networks (V-RAN). We focus on key problems in a holistic analytics infrastructure for engineers without strong ML skills and powerful computing infrastructures. We characterize types of relevant data and existing data systems to follow a specific data mesh approach suitable for engineers. The paper presents key steps in establishing the participation of engineers and the acquisition of domain knowledge. We introduce models for representing analytics subjects and their dependencies, and for managing relevant ML techniques and methods for analytics subjects. We explain our work through examples from a large-scale mobile network of approximately 4 million subscribers.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2022 IEEE International Conference on Big Data (IEEE BigData 2022) |
Toimittajat | Shusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan |
Kustantaja | IEEE |
Sivut | 2389-2393 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-1-6654-8045-1 |
ISBN (painettu) | 978-1-6654-8046-8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Big Data - Osaka, Japani Kesto: 17 jouluk. 2022 → 20 jouluk. 2022 |
Conference
Conference | IEEE International Conference on Big Data |
---|---|
Lyhennettä | BigData |
Maa/Alue | Japani |
Kaupunki | Osaka |
Ajanjakso | 17/12/2022 → 20/12/2022 |